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It is a familiar fact that in the approximation of geometrical op-
tics the normal oscillations in a weakly inhomogeneous medium are
independent. The approximation of geometrical optics is, however,
violated close to those points where either the wave vector k(x) be~-
comes zero (reversal point}), or where the wave vectors corresponding
to the different types of oscillation coincide (points of intersection of
the solutions). In the immediate neighborhood of these points separa~
tion into normal oscillations is no longer possible, which in the case
of "points of intersection of the solutions™ leads to the possible appear-
ance, in addition to the wave incident from infinity, of another new
wave with different dispersive properties.

However, cases so far considered of the "birth" of a new wave
due to the passage of an incident wave with such properties have led
to an exponentially small transformation coefficient, and also to the
absence of reflected waves (see, for example, [1]; ibid. bibliography).

In [2] the rules for going around points of "intersection” of the so-
lutions were obtained for a system of two coupled oscillators, which
also led to the appearance of the reflected solutions

exp (S o (1) dt) - exp (— S  {t) dt) '

where w(t) is the normal frequency of the oscillator and varies slowly
with time. The transformation and reflection coefficients here turned
out to be exponentially small.

The problem of wave propagation in a medium is the exact math-
ematical equivalent of the problem of the oscillations of two coupled
oscillators (only instead of considering w(t) as a slowly varying func-
tion of time we must consider k(x) as a slowly varying function of the
coordinate). Thus the results [2] may be transferred to the case of
wave transformation.

In what follows we consider the appearance of reflected waves
when the solutions "intersect,” and also the appearance of transmitted
waves with a large transformation coefficient,

1. We shall represent k; in the form

kl = 1/2 (kl + kz) + 1/2 (kl — kz)-

Here kq(x), ky(x) are the wave vectors which coin-
cide at some point in the complex x-plane,

It is clear that if the expression k; — ky is many~
valued in the neighborhood of points where the solu-
tions M"intersect," then it is possible for a wave to ap~
pear, only with different dispersion properties k; —
— ky (since only the sign of the difference k, ~ k, can
change).

(1.1)

Fig, 1

However, if ky +k, is also a multi-valued function,
then the transition ky — —k;, for example, is possible;
this corresponds to the appearance of reflected waves.

It should be stressed at this point that for the appear-
ance of reflected waves it is a necessary, but not suf-
ficient condition that k; — ks, k4 + k, should be multi-

valued, since the pattern according to which the level

lines for
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are disposed relative to the real axis is also of im-
portance,
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Fig. 2

At least there appear specifically new conditions
for going around singular points compared with a sec-
ond-order differential equation, specifically in the
case where ky — k, and ky + ko become multi-valued
simultaneously (as is clear from (1.1), the different
components from which ky, for example, is composed,
have their own system of level lines).

We shall here try to determine the possibility of
the "birth," in the region where the solutions "inter-
sect," of new waves (k; — k,) with a coefficient of the
order of unity,

If a large transformation is to be achieved, then
conditions must be created which do not allow the in-
cident wave to be transmitted to some region where,
however, the second of the mutually coupled waves
may propagate freely. We note that in [2], as a result
of the way in which the problem was posed, the coef-
ficients of the equations vanished nowhere, and the
coupled oscillations existed over the whole real axis,
This, in its turn, led to a pattern of level lines for

Sttt bz, (h—hoda

exactly similar to the pattern of level lines for [p dx
in quantum mechanics in the case of reflection where
the barrier energy is exceeded (see [3], here p is the
impulse of the particle). We recall that in this latter
case an exponentially small reflection coefficient is
also obtained,

In what follows, in order to be specific, we shall
consider the differential equation

ol - u, (2) po’'+ uy (1) = 0 (B=A/7) (1.2)

with two small parameters « and 5, Here A is the
wavelength of the oscillation, and R is the charac-
teristic dimension of the irregularity; the second
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small parameter « is connected with the concrete
physical situation; the discussion given here applies,
in particular, to the case where o =1, uj~ 1, uy~
~ 1, with the exception of the points where they may
become zero, -

We shall avail ourselves of the following represen-
tation for (1.2):

= 7l () s e - () e

We shall investigate the behavior of k, ; close to
the point where u, = 0 (Fig. 1). It follows from (1.3)
that in the region where x < 0 oscillating solutions
exist with wave vector ky; correspondingly, in the
region where x > 0 there are solutions with wave vec~
tor k, (we take the origin at the point uy = 0). Further,
writing u, = ux, w; = uy; (in the neighborhood of the
point u, = 0 the specific behavior of uy is immaterial),
we see from (1.3) that not only is ky ~ k, a multi-val-
ued function, but also ky + k.

The pattern according to which the level lines

Coo—kydaz, (bt ho)de
are disposed relative to the real axis is now quite dif-
ferent from the pattern of level lines for these ex-
pressions in the case similar to reflection in quantum
mechanics where the barrier energy is exceeded (see
Fig. 2; the branch points for ky — ky and k, + k, are
indicated by a4 and a,, respectively).

We also draw attention to the fact that for concrete
applications of Eq. (1.2) to the question of transforma-
tion of oscillations uy < 0 at the point where u, = 0, as
depicted in Fig. 1, To convince ourselves of this we
consider the system of two coupled oscillators

ez’ +oltHz=v®)y,

V' ol y=v@®z 1.4)
to which the following fourth-order differential equa-
tion corresponds

0V + (0, + ao) 27 —(1® —ofe?) z=0(1.5)

when the coefficients vary slowly.
It is clear that

U, = — (. + o’ u =— 0" —00%;

u; <0 for w,=o0.

It has been pointed out above that oscillating solu-~
tions with different dispersion properties exist on dif-
ferent sides of the point u, = 0, and so a large mutual
wave transformation is to be expected here. To be
finally convinced of this we consider the coupling be~-
tween the solution of Eq. (1.2) on either side of the
point u, = 0. Making the substitution x = 8y, we re-
duce (1.2) in the neighborhood of the point u, = 0 to

the form

"V — A2 (uye” + uyp) =0 A2=f/). (1.6)

The properties of the solutions of (1.6) for A, > 1
were investigated by Laplace's method in [4], and for
A+ «< 1 by the phase integral method in [5, 6] (in this
case the distance between the points ay and a, is large
compared with the wavelength of the intersecting so-
lutions, and we may go around each singular point
separately).

We note that it follows from the analysis of solu-
tions obtained in [4, 5] that the asymptotic solutions
are similar for A4 > 1 and A, « 1, In what follows
we shall need only the asymptotic form of one of the
solutions obtained in [4] for large y,

¢ = niyfu H\® 2uy ™y (y<0)

g = Vah e CLE) ™™ +

+ nuiyuy T W Quygy's (v > 0)

E = ik, y's, 1.7

We see from (1.7) that in the case when the form
of u; and u, is similar to that depicted in Fig. 1, the
solution which has wave vector k; for y < 0 passes,
for y > 0, into the solution with wave vector k, (it is
not difficult to see that H,® (2u,," y**)is exponentially
damped for large y > 0).

2, We will now consider some concrete applica-
tions,

In [7] consideration was given to the question of
the mutual transformation of fast and slow magneto-
sonic waves in the case when only the expression
&y = k,) is multi~valued. The equation for these waves
obtained in [7] has the form
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Here S is the velocity of sound, v is the Alfvén
velocity, @,(z) is the density of the medium which is
nonuniform along the magnetic field Hy (H, is directed
along the z axis).
It is not difficult to see that if there exist points z,
in the medium for which the condition

©? /'? Y
+[UA2 (F_ky /| -

2.2)

is fulfilled, then all the considerations set forth here,
and, in particular, formula (1.7), are applicable to
(2.1), We note that the question of the anomalous mu-
tual transformation of magnetohydrodynamic waves
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may be of particular significance in constructing a
theory of heating of the chromosphere [8], We shall
consider the guestion of the conversion of a plasma
wave to an electromagnetic wave, which was treated
in [9]. The system of equations for this case has the
following form (see [1]):

fw  de 1 ( o Bl dw
de? ~ dz €—api,? T ¢ ) dz
;8,2
+ ko? (8 — o) w it de du - 2.3)

T (1—e)(e—a®B2) dz dz

2 Qug eB,2 de Qug
B dz? (1—e)(e—a?BD) dz  dz
B, de/dzs dw
+ k? (8 — B ug = — e—oup,? 1—¢ Y koouyw
® v 4ne’N
ho="y Be= e=lepg <o G.4)

Here w is the amplitude of the component on the x
axis of the magnetic field of normal oscillations, ug
is the amplitude of the component on the z axis of the
electric field of normal oscillations, « is the sine of
the angle of incidence of the plasma wave on a plasma
layer with density N varying in the z direction, k, is
the wave vector of the electromagnetic wave, Brp is a
small parameter, vy is the thermal velocity of the
electrons, e is the electronic charge, m is the elec-
tronic mass., For simplicity, we neglect wave absorp-
tion. As in [9], we approximate € (z) by the linear func-
tion

€(z) = —zgrad & (grade~R"D. (2.5)

If R is large enough, then the zeros of uy, y in the
fourth-order differential equation equivalent to (2.3)
and (2.4) are situated at the points

_ 2 _ an 2
gy = —20,%8,°R, z; = —Ra?, 2, = —Rop,,

respectively, and the graph of u,, u; has the form de-
picted in Fig., 3.
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Fig. 3

Moreover, Egs. (2.3) and (2.4) have a singularity
at the point z, = —Ruo,8,2 If
oRa P2t >1, (2.6)
then, in passing around the point u, = 0, we may omit
taking the above-mentioned singularity into account.
We note that condition (2. 6) is also equivalent to the fact that

there are many wavelengths of "mode”™ ky (the wavelength of which
Ay ~ ¢/way) packed into the region zgz,. It is then easy to see that

in the neighborhood of the point u, = 0 the system (2.3), (2.4) is
similar to Eq. (1.2} [the presence of the first derivative in the equa-
tion introduces no significant variations in the rules for going around
up = 0 {see [10T)].

Fig, 4

Oscillating solutions of the plasma "mode” (with wavelength A ~
~ 14, where rq is the Debye radius of the plasma) exist in the region
z < zg, If this normal wave is incident from the left on the neighbor~
hood of the point z, then, according to (1.7), for z > z it passes
completely into another normal wave with wave vector kp, which
could be recorded by a receiver situated in the region zyz,. In the
case investigated in [9], however, the escape of electromagnetic
radiation to the exterior of the sun was considered, i.e., in the di-
rection z <« gz (the density of the solar plasma increases in the di-
rection z — ), In this case electromagnetic radiation reflected from
the point z, is damped in the region z,z; and oscillates further on.
The presence of a barrier for electromagnetic radiation results in only
a small amount of it emerging from the solar plasma,

We note, however, that a large transformation is possible between
the ordinary and extraordinary waves. Thus it may be shown that
anomalous transformation is possible in a rarefied plasma if the Larmor
frequency corresponding to the magnetic field component in the direc-
tion of wave propagation is of the order of the frequency of these
waves,

Besides being of intrinsic interest, the question of wave transfor-
mation may be of importance in the problem of plasma stability., To
demonstrate this we consider the following example, Let the behavior
of the coefficients uy and uy be similar to that depicted in Fig, 4. In
this case one of the "coupled" waves (with wave vector k;) oscillates
at infinity, and the other is damped. Let a localized disturbance
("packet™), which increases with time and is formed by waves with
wave vector ky, arise in the central position of the region 010,. In
this case if the rate at which energy escapes to infinity on account of
the transformation into another type of wave exceeds the rate at which
energy passes into the disturbance from the instability sources, then
the instability does not develop and the plasma itself may now serve
as a generator of oscillations which go off to infinity,

The author is grateful to R, Z. Sagdeev for his in-
terest in the paper and for valuable discussions,
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